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Abstract

Tensors (also known as multidimensional arrays or N -way arrays) are used
in a variety of applications ranging from chemometrics to psychometrics. We de-
scribe four MATLAB classes for tensor manipulations that can be used for fast
algorithm prototyping. The tensor class extends the functionality of MAT-
LAB’s multidimensional arrays by supporting additional operations such as
tensor multiplication. The tensor as matrix class supports the “matriciza-
tion” of a tensor, i.e., the conversion of a tensor to a matrix (and vice versa),
a commonly used operation in many algorithms. Two additional classes rep-
resent tensors stored in decomposed formats: cp tensor and tucker tensor.
We describe all of these classes and then demonstrate their use by showing how
to implement several tensor algorithms that have appeared in the literature.

3



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Basic Notation & MATLAB Commands for Tensors . . . . . . . . . . . . . 8
2.1 Creating a tensor object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Tensors and size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Accessors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 General functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Tensor Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 Multiplying a tensor times a matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Multiplying a tensor times a vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Multiplying a tensor times another tensor . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Matricize: Transforming a Tensor into a Matrix . . . . . . . . . . . . . . . . . 27
4.1 General Matricize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Mode-n Matricize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Decomposed Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1 CP tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Tucker tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Relationship between CP and Tucker tensors . . . . . . . . . . . . . . . . . . . . . . 39

6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Figures

1 A 3-way array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Slices of a 3rd-order tensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Fibers of a 3rd-order tensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4 Example of creating a tensor object from a multidimensional array. . . 10
5 Trailing singleton dimensions in the tensor class . . . . . . . . . . . . . . . . . . 12
6 Zero- and one-dimensional objects in the tensor class . . . . . . . . . . . . . . 13
7 Accessors and assignment in the tensor class . . . . . . . . . . . . . . . . . . . . . 14
8 Similar functions for tensors and multidimensional arrays . . . . . . . . . . . 15
9 Calculating n-mode products. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
10 An alternate approach to calculating n-mode products. . . . . . . . . . . . . . 18
11 Comparison of A×n uT and A×̄n u. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
12 Tensor times a sequence of vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
13 Tensor times tensor: outer product. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4



14 Computing the contracted product with ttt . . . . . . . . . . . . . . . . . . . . . . 25
15 Computing the inner product with ttt . . . . . . . . . . . . . . . . . . . . . . . . . . 26
16 Matricizing a tensor using the tensor as matrix class. . . . . . . . . . . . . . 29
17 Tensor-tensor multiplication using tensor as matrix objects. . . . . . . . . 30
18 Constructing a tensor by reshaping a tensor as matrix object. . . . . . 31
19 Backward cyclic matricizing a 3-way tensor. . . . . . . . . . . . . . . . . . . . . . . 32
20 Forward cyclic matricizing a 3-way tensor. . . . . . . . . . . . . . . . . . . . . . . . . 32
21 Two choices for converting a tensor to a matrix. . . . . . . . . . . . . . . . . . . . 34
22 Computing the series of n-mode products using tensor as matrix. . . . 35
23 Creating a CP tensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
24 Adding two CP tensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
25 Creating a Tucker tensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
26 Higher-order power method using the proposed notation. . . . . . . . . . . . . 42
27 MATLAB code for the higher-order power method. . . . . . . . . . . . . . . . . 43
28 Example of the higher-order power method. . . . . . . . . . . . . . . . . . . . . . . . 44
29 Higher-order orthogonal iteration algorithm using the proposed notation. 45
30 MATLAB code for the higher-order orthogonal iteration method. . . . . . 46
31 Example of computing the best rank-(1,1,1) tensor. . . . . . . . . . . . . . . . . 47
32 Example of computing the best rank-(2,2,1) tensor. . . . . . . . . . . . . . . . . 48
33 Example of computing the best rank-(3,4,2) tensor. . . . . . . . . . . . . . . . . 49

5



6



MATLAB Tensor Classes for
Fast Algorithm Prototyping

1 Introduction

A tensor is a multidimensional or N -way array of data; Figure 1 shows a 3-way
array of size I1 × I2 × I3. Tensors arise in many applications, including chemometrics
[11], signal processing [3], and image processing [15]. In this paper, we describe four
MATLAB classes for manipulating tensors: tensor, tensor as matrix, cp tensor,
and tucker tensor.
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1

i2 = 1, . . . , I2
i 3

=
1,

. .
. ,
I 3

Figure 1. A 3-way array

MATLAB is a high-level computing environment that allows users to develop
mathematical algorithms using familiar mathematical notation. In terms of higher-
order tensors, MATLAB supports multidimensional arrays (MDAs). Allowed oper-
ations on MDAs include elementwise operations, permutation of indices, and most
vector operations (like sum and mean) [13]. More complex operations, such as the
multiplication of two MDAs, are not supported by MATLAB. This paper describes
a tensor datatype that extends MATLAB’s MDA functionality to support tensor
multiplication and more through the use of MATLAB’s class functionality [12].

Basic mathematical notation and operations for tensors, as well as the related
MATLAB commands, are described in §2. Tensor multiplication receives its own
section, §3, in which we describe both notation and how to multiply a tensor times
a vector, a tensor times a matrix, and a tensor times another tensor. Conversion of
a tensor to a matrix (and vice versa) via the tensor as matrix class is described in
§4.
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A tensor may be stored in factored form as a sum of rank-1 tensors. There are two
commonly accepted factored forms. The first was developed independently under two
names: the CANDECOMP model of Carroll and Chang [2] and the PARAFAC model
of Harshman [7]. Following the notation in Kiers [9], we refer to this decomposition
as the CP model. The second decomposition is the Tucker [14] model. Both models,
as well as the corresponding MATLAB classes cp tensor and tucker tensor, are
described in §5.

We note that these MATLAB classes serve a purely supporting role in the sense
that these classes do not contain high-level algorithms—just the data types and their
associated member functions. Thus, we view this work as complementary to those
packages that provide algorithms for use with tensor data, the N -way toolbox for
MATLAB by Andersson and Bro [1].

In general, we use the following notational conventions. Indices are denoted by
lowercase letters and span the range from 1 to the uppercase letter of the index, e.g.,
n = 1, 2, . . . , N . We denote vectors by lowercase boldface letters, e.g., x; matrices by
uppercase boldface, e.g., U; and tensors by calligraphic letters, e.g., A. Notation for
tensor mathematics is still sometimes awkward. We have tried to be as standard as
possible, relying on Harshman [8] and Kiers [9] for some guidance in this regard.

2 Basic Notation & MATLAB Commands for Ten-

sors

Let A be a tensor of dimension I1 × I2 × · · · × IN . The order of A is N . The nth
dimension (or mode or way) of A is of size In.

A scalar is a zeroth-order tensor. An n-vector is a first-order tensor of size n. An
m×n matrix is a second-order tensor of size m×n. Of course, a single number could
be a scalar, a 1-vector, a 1× 1 matrix, etc. Similarly, an n-vector could be viewed as
an n×1 matrix, or an m×n matrix could be viewed as a m×n×1 tensor. It depends
on the context, and our tensor class explicitly tracks the context, as described in
§2.2.

We denote the index of a single element within a tensor by either subscripts or
parentheses. Subscripts are generally used for indexing on matrices and vectors but
can be confusing for the complex indexing that is sometimes required for tensors. In
general, we use A(i1, i2, . . . , iN) rather than Ai1i2···iN .

We use colon notation to denote the full range of a given index. The ith row of a
matrix A is given by A(i, :), and the jth column is A(:, j). For higher-order tensors,
the notation is extended in an obvious way, but the terminology is more complicated.
Consider a 3rd-order tensor. In this case, specifying a single index yields a slice [9],
which is a matrix in a specific orientation. So, A(i, :, :) yields the ith horizontal slice,
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A(:, j, :) the jth lateral slice, and A(:, :, k) the kth frontal slice; see Figure 2.
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Lateral A(:, j, :) Frontal A(:, :, k)

Figure 2. Slices of a 3rd-order tensor.

On the other hand, A(:, j, k) yields a column vector, A(i, :, k) yields a row vector,
and A(i, j, :) yields a so-called tube vector [10]; see Figure 3. Alternatively, these
are called column fibers, row fibers, and depth fibers, respectively [9]. In general, a
mode-n fiber is specified by fixing all dimensions except the nth.

Mode-1 — Columns
A(:, j, k)

Mode-2 — Rows
A(i, :, k)
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Mode-3 — Tubes
A(i, j, :)

Figure 3. Fibers of a 3rd-order tensor.

2.1 Creating a tensor object

In MATLAB, a higher-order tensor can be stored as an MDA. We introduce the
tensor class to extend the capabilities of the MDA datatype. An array or MDA can
be converted to a tensor as follows, and Figure 4 shows an example of creating a
tensor.
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T = tensor(A) or T = tensor(A,DIM) converts an array (scalar, vector,
matrix, or MDA) to a tensor. Here A is the object to be converted and DIM

specifies the dimensions of the object.

A = double(T) converts a tensor to an array (scalar, vector, matrix, or MDA).

% Create a three-dimensional MDA
A = rand(3,4,2)

A(:,:,1) =
0.2626 0.0211 0.8837 0.7377
0.2021 0.0832 0.1891 0.3264
0.7666 0.1450 0.4118 0.6331

A(:,:,2) =
0.1501 0.0396 0.7307 0.4609
0.2340 0.1489 0.6396 0.4528
0.2955 0.4261 0.1215 0.1157

% Convert A to a tensor
T = tensor(A)

T is a tensor of size 3 x 4 x 2
T.data =
(:,:,1) =

0.2626 0.0211 0.8837 0.7377
0.2021 0.0832 0.1891 0.3264
0.7666 0.1450 0.4118 0.6331

(:,:,2) =
0.1501 0.0396 0.7307 0.4609
0.2340 0.1489 0.6396 0.4528
0.2955 0.4261 0.1215 0.1157

Figure 4. Example of creating a tensor object from a multidimensional array.

2.2 Tensors and size

Out of necessity, the tensor class handles sizes in a different way than the MATLAB
arrays. Every MATLAB array has at least 2 dimensions; for example, a scalar is an
object of size 1 × 1 and a column vector is an object of size n × 1. On the other
hand, MATLAB drops trailing singleton dimensions for any object of order greater
than 2. Thus, a 4× 3× 1 object has a reported size of 4× 3. Our MATLAB tensor
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class explicitly stores trailing singleton dimensions; see Figure 5. Furthermore, the
tensor class allows for tensors of order zero (for a scalar) or one (for a vector); see
Figure 6. The function order returns the mathematical concept of order for a tensor,
while the function ndims returns an algorithmic notion of the dimensions of a tensor,
which is is useful for determining the number of subscripts capable of accessing all of
the elements in the data structure (i.e., 1 for the case of a scalar or vector). Figure 5
also shows that the whos command does not report the correct sizes in the zero-
or one-dimensional cases. The tensor constructor argument DIM must be specified
whenever the order is intended to be zero or one or when there are trailing singleton
dimensions.

2.3 Accessors

In MATLAB, indexing a tensor is the same as indexing a matrix:

A(i1,i2,...,iN) returns the (i1, i2, . . . , iN) element of A.

Recall that A(:, :, k) denotes the kth frontal slice. The MATLAB notation is straight-
forward:

A(:,:,k) returns the kth submatrix along the third dimension of the tensor A.

Figure 7 shows examples of accessors for a tensor.

2.4 General functionality

In general, a tensor object will behave exactly as an MDA for all functions that are
defined for an MDA; a list of these function is provided in Figure 8.

3 Tensor Multiplication

Notation for tensor multiplication is very complex. The issues have to do with spec-
ifying which dimensions are to be multiplied and how the dimensions of the result
should be ordered. We approached this problem by developing notation that can
be expressed easily by MATLAB. We describe three types of tensor multiplication:
tensor times a matrix (§3.1), tensor times a vector (§3.2), and tensor times a tensor
(§3.3).
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% Create an MDA of size 4 x 3 x 1.
% Trailing singleton dimensions are ignored, so
% the number of reported dimensions is only 2.
A = rand([4 3 1]);

ndims(A)
ans =

2

size(A)
ans =

4 3

% Specifing the dimensions explicitly creates
% an order-3 tensor of size 4 x 3 x 1.
T = tensor(A,[4 3 1]);

ndims(T)
ans =

3

size(T)
ans =

4 3 1

% The ‘whos’ command reports the correct sizes.
whos

Name Size Bytes Class

A 4x3 96 double array
T 4x3x1 368 tensor object

Grand total is 29 elements using 464 bytes

Figure 5. The tensor class explicitly keeps trailing singleton dimensions.
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% A scalar can be stored as a tensor of order zero.
T0 = tensor(5,[]);

order(T0)
ans =

0

ndims(T0)
ans =

1

size(T0)
ans =

[]

% A vector can be stored as a tensor of order one.
T1 = tensor(rand(4,1),[4]);

order(T1)
ans =

1

ndims(T1)
ans =

1

size(T1)
ans =

4

% The ‘whos’ command does not report the correct sizes!
whos

Name Size Bytes Class

T0 1x1 256 tensor object
T1 1x1 288 tensor object

Grand total is 10 elements using 544 bytes

Figure 6. The tensor object can explicitly store zero- and one-dimensional objects.
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% Create a random 2 x 2 x 2 tensor
A = tensor(rand(2,2,2))

A is a tensor of size 2 x 2 x 2
A.data =
(:,:,1) =

0.4021 0.8332
0.6531 0.3029

(:,:,2) =
0.5953 0.3480
0.4503 0.3982

% Access the (2,1,1) element
A(2,1,1)

ans =
0.6531

% Reassign a 2 x 2 submatrix to be
% the 2 x 2 identity matrix
A(:,1,:) = eye(2)

A is a tensor of size 2 x 2 x 2
A.data =
(:,:,1) =

1.0000 0.8332
0 0.3029

(:,:,2) =
0 0.3480

1.0000 0.3982

Figure 7. Accessors and assignment for a tensor object work the same as they would
for a multidimensional array.
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• A + B or plus(A,B)

• A - B or minus(A,B)

• -A or uminus(A)

• +A or uplus(A)

• A.*B or times(A,B)

• A./B or rdivide(A,B)

• A.\B or ldivide(A,B)

• A.^B or power(A,B)

• A < B or lt(A,B)

• A > B or gt(A,B)

• A <= B or le(A,B)

• A >= B or ge(A,B)

• A ~= B or ne(A,B)

• A == B or eq(A,B)

• A & B or and(A,B)

• A | B or or(A,B)

• ~A or not(A)

Figure 8. Functions that behave identically for tensors and multidimensional arrays.

3.1 Multiplying a tensor times a matrix

The first question we consider is how to multiply a tensor times a matrix. With
matrix multiplication, the specification of which dimensions should be multiplied is
straightforward—it is always the inner product of the rows of the first matrix with
the columns of the second matrix. A transpose on an argument swaps the rows and
columns. Because tensors may have an arbitrary number of dimensions, the situation
is more complicated. In this case, we need to specify which dimension of the tensor
is multiplied by the columns (or rows) of the given matrix.

The adopted solution is the n-mode product [5]. Let A be an I1 × I2 × · · · × IN

tensor, and let U be an Jn × In matrix. Then the n-mode product of A and U is
denoted by

A×n U,

and defined (elementwise) as

(A×n U)(i1, . . . , in−1, jn, in+1, . . . , iN) =
In∑

in=1

A(i1, i2, . . . , iN) B(jn, in).

The result is a tensor of size I1 × · · · × In−1 × Jn × In+1 × · · · × IN . Some authors call
this operation the mode-n inner product and denote it as A •n U (see, e.g., Comon
[4]).

To understand n-mode multiplication in terms of matrices (i.e., order-2 tensors),
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suppose A is m× n, U is m× k, and V is n× k. It follows that

A×1 UT = UTA and A×2 VT = AV.

Further, the matrix SVD can be written as

A = UΣVT = Σ×1 U×2 V.

The following MATLAB commands can be used to calculate n-mode products.

B = ttm(A,U,n) calculates “tensor times matrix” in mode-n, i.e., B = A×n U.

B = ttm(A,{U,V},[m,n]) calculates two sequential n-mode products in the
specified modes, i.e., B = A×m U×n V.

The n-mode product satisfies the following property [5]. Let A be a tensor of size
I1 × I2 × · · · × IN . If U ∈ RJm×Im and V ∈ RJn×In , then

A×m U×n V = A×n V ×m U. (1)

Figure 9 shows an example that demonstrates this property, and Figure 10 revisits
the same example but calculates the products using cell arrays.

It is often desirable to calculate the product of a tensor and a sequence of matrices.
Let A be an I1 × I2 × · · · × IN tensor, and let U(n) denote a Jn × In matrix for
n = 1, . . . , N . Then the sequence of products

B = A×1 U(1) ×2 U(2) · · · ×N U(N) (2)

is of size J1 × J2 × · · · × JN . We propose new, alternative notation for this operation
that is consistent with the MATLAB notation for cell arrays:

B = A× {U}.

This mathematical notation will prove useful in presenting some algorithms, as shown
in §6.

The following equivalent MATLAB commands can be used to calculate n-mode
products with a sequence of matrices.

B = ttm(A,{U1,U2,...,UN}, [1:N]) calculates
B = A×1 U(1) ×2 U(2) · · · ×n U(N). Here Un is a MATLAB matrix representing
U(n).

B = ttm(A,U) calculates B = A× {U}. Here U = {U1,U2,. . . ,UN} is a
MATLAB cell array and Un is as described above.
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A = tensor(rand(4,3,2));
U = rand(2,4);
V = rand(3,2);

% Computing A x_1 U x_3 V
B = ttm(A,U,1);
C = ttm(B,V,3)

C is a tensor of size 2 x 3 x 3
C.data =
(:,:,1) =

1.9727 2.0380 2.6528
1.6460 1.8647 2.4649

(:,:,2) =
1.9051 2.0078 2.5385
1.5881 1.8406 2.3523

(:,:,3) =
0.3289 0.3437 0.4400
0.2743 0.3148 0.4082

% Computing A x_3 V x_1 U
B = ttm(A,V,3);
C = ttm(B,U,1)

C is a tensor of size 2 x 3 x 3
C.data =
(:,:,1) =

1.9727 2.0380 2.6528
1.6460 1.8647 2.4649

(:,:,2) =
1.9051 2.0078 2.5385
1.5881 1.8406 2.3523

(:,:,3) =
0.3289 0.3437 0.4400
0.2743 0.3148 0.4082

Figure 9. Calculating n-mode products.
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% Repeat the calculation from the previous figure,
% but use a cell array
W{1} = U;
W{2} = V;
C = ttm(A,W,[1 3])

C is a tensor of size 2 x 3 x 3
C.data =
(:,:,1) =

1.9727 2.0380 2.6528
1.6460 1.8647 2.4649

(:,:,2) =
1.9051 2.0078 2.5385
1.5881 1.8406 2.3523

(:,:,3) =
0.3289 0.3437 0.4400
0.2743 0.3148 0.4082

Figure 10. An alternate approach to calculating n-mode products.

Another frequently used operation is multiplying by all but one of a sequence of
matrices:

B = A×1 U(1) · · · ×n−1 U(n−1) ×n+1 U(n+1) · · · ×N U(N).

We propose new, alternative notation for this operation:

B = A×−n {U}.

This notation will prove useful in presenting some algorithms in §6.

The following MATLAB commands can be used to calculate n-mode products
with all but one of a sequence of matrices.

B = ttm(A,U,-n) calculates B = A×−n {U}. Here U = {U1,U2,. . . ,UN} is a
MATLAB cell array; the nth cell is simply ignored in the computation.

Note that B = ttm(A,{U1,. . . ,U4,U6,. . . ,U9},[1:4,6:9]) is equivalent to B = ttm(A,U,-5)

where U={U1,. . . ,U9} ; both calculate B = A×−5 {U}.
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3.2 Multiplying a tensor times a vector

In our opinion, one source of confusion in n-mode multiplication is what to do to the
singleton dimension in mode n that is introduced when multiplying a tensor times
a vector. If the singleton dimension is dropped (as is sometimes desired), then the
commutativity of the multiplies (1) outlined in the previous section no longer holds
because the order of the intermediate result changes and ×n or ×m applies to the
wrong mode.

Although one can usually determine the correct order of the result via the context
of the equation, it is impossible to do this automatically in MATLAB in any robust
way. Thus, we propose an alternate name and notation in the case when the newly
introduced singleton dimension indeed should be dropped.

Let A be an I1 × I2 × · · · × IN tensor, and let b be an In-vector. We propose that
the contracted n-mode product, which drops the nth singleton dimension, be denoted
by

A×̄n b.

The result is of size I1×· · ·× In−1× In+1×· · ·× IN . Note that the order of the result
is N − 1, one less than the original tensor. The entries are computed as:

(A×̄n u)(i1, . . . , in−1, in+1, . . . , iN) =
In∑

in=1

A(i1, i2, . . . , iN) u(in).

The following MATLAB command computes the contracted n-mode product.

B = ttv(A,u,n) calculates “tensor times vector” in mode-n, i.e., B = A×̄n u.

Observe that A×̄n u and A×n uT produce identical results except for the order and
shape of the results; that is, A×̄n u is of size I1×· · ·×In−1×In+1×· · ·×IN , whereas
A×n uT is of size I1 × · · · × In−1 × 1× In+1 × · · · × IN . See Figure 11 for an example.

Because the contracted n-mode product drops the nth singleton dimension, it is
no longer true that multiplication is commutative; i.e.,

(A×̄m u) ×̄n v 6= (A×̄n v) ×̄m u.

However, a different statement about commutativity may be made. If we assume
m < n, then

(A×̄m u) ×̄n−1 v = (A×̄n v) ×̄m u.

For the sake of clarity in a sequence of contracted products, we assume that the order
reduction happens after all products have been computed. This assumption obviates
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A = tensor(rand(3,4,2));
u = rand(3,1);

% Computing "tensor times vector"
C = ttv(A,u,1)

C is a tensor of size 4 x 2
C.data =

0.5058 0.9385
0.3319 0.4829
0.1857 0.5141
0.6210 0.8288

% Computing "tensor times matrix" yields same result,
% but of size 1 x 4 x 2.
B = ttm(A,u’,1)

B is a tensor of size 1 x 4 x 2
B.data =
(:,:,1) =

0.5058 0.3319 0.1857 0.6210
(:,:,2) =

0.9385 0.4829 0.5141 0.8288

Figure 11. Comparison of A×n uT and A×̄n u.

20



the need to explicitly place parentheses in an expression and appropriately decrement
any n-mode product indices. In other words,

A×̄m u ×̄n v ≡

{
(A×̄m u) ×̄n v : m > n,

(A×̄m u) ×̄n−1 v : m < n.
(3)

As before with matrices, it is often useful to calculate the product of a tensor and
a sequence of vectors; e.g.,

B = A×̄1 u(1) ×̄2 u(2) · · · ×̄N u(N)

or
B = A×̄1 u(1) · · · ×̄n−1 u(n−1) ×̄n+1 u(n+1) · · · ×̄N u(N).

We propose the following alternative notation for these two cases:

B = A×̄ {u}

and
B = A×̄−n {u},

respectively.

In practice, one must be careful when calculating a sequence of contracted prod-
ucts to perform the multiplications starting with the highest mode and proceed se-
quentially to the lowest mode. The following MATLAB commands automatically sort
the modes in the correct order.

B = ttv(A, u1,u3, [1,3]) computes B = A×̄1 u(1) ×̄3 u(3) where u1 and u3

correspond to vectors u(1) and u(3), respectively.

B = ttv(A,u) computes B = A×̄ {u} where u is a cell array whose nth entry
is the vector u(n).

B = ttv(A,u,-n) computes B = A×̄−n {u}.

Note that the result of the second expression is a scalar, and the result of the third
expression is a vector of size In; see Figure 12.

3.3 Multiplying a tensor times another tensor

The last category of tensor multiplication to consider is the product of two tensors.
We consider three general scenarios for tensor-tensor multiplication: outer product,
contracted product, and inner product.
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A = tensor(rand(3,4,2));
U = {rand(3,1), rand(4,1), rand(2,1)};

% A tensor times a sequence of vectors in every
% dimension produces a scalar.
ttv(A,U)

ans is a tensor of order 0 (i.e., a scalar)
ans.data =

1.1812

% A tensor times a sequence of vectors in every
% dimension *except one* produces a vector.
ttv(A,U,-2)

ans is a tensor of size 4
ans.data =

0.5794
0.9246
0.8470
0.3318

Figure 12. Tensor times a sequence of vectors.
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The outer product of two tensors is defined as follows. Let A be of size I1 ×
· · · × IM , and let B be of size J1 × · · · × JN . The outer product A ◦ B is of size
I1 × · · · × IM × J1 × · · · × JN and is given by

A ◦ B(i1, . . . iM , j1, . . . , jN) = A(i1, . . . , iM)B(j1, . . . , jN).

In MATLAB, the command is as follows, and Figure 13 shows an example of com-
puting the outer product of two tensors.

C= ttt(A,B) computes “tensor times tensor”; i.e., the outer product
C = A ◦ B.

A = tensor(reshape([1:12],[3,4]));
B = tensor([1;2],2);

ttt(A,B)

ans is a tensor of size 3 x 4 x 2
ans.data =
(:,:,1) =

1 4 7 10
2 5 8 11
3 6 9 12

(:,:,2) =
2 8 14 20
4 10 16 22
6 12 18 24

Figure 13. Tensor times tensor: outer product.

The contracted product of two tensors is similar to tensor-vector multiplication
and to tensor-matrix multiplication discussed above. However, a key distinction in
this case is the specification of modes for an inner product computation and the
ordering of the remaining modes in the product.

Specifically, let A be of size I1 × · · · × IM × J1 × · · · × JN and B be of size
I1×· · ·×IM ×K1×· · ·×KP . We can multiply both tensors along the first M modes,
and the result is a tensor of size J1 × · · · × JN ×K1 × · · · ×KP , given by

〈A,B〉{1,...,M ;1,...,M} (j1, . . . jN , k1, . . . , kP ) =

I1∑
i1=1

· · ·
IM∑

iM=1

A(i1, . . . , iM , j1, . . . , jN) B(i1, . . . , iM , k1, . . . , kP ).
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With this notation, the modes to be multiplied are specified in the subscripts that
follow the angle brackets. The remaining modes are ordered such that those from
A come before B, which is different from the tensor-matrix product case considered
above where the leftover matrix dimension of B replaces In rather than moved to the
end. In MATLAB, the command is as follows.

C = ttt(A,B,[1:M],[1:M]) computes C = 〈A,B〉{1,...,M ;1,...,M}.

The arguments specifying the modes of A and the modes of B for contraction
need not be consecutive, as shown in the previous example. However, the sizes of the
corresponding dimensions must be equal. That is, if we call ttt(A,B,ADIMS,BDIMS)
then size(A,ADIMS) and size(B,BDIMS) must be identical. See Figure 14 for an
example.

The inner product of two tensors requires that both tensors have equal dimensions.
Assuming both are of size I1 × I2 × · · · × IN , their inner product is given by

〈A,B〉 =

I1∑
i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

A(i1, i2, . . . , iN) B(i1, i2, . . . , iN).

In MATLAB this is accomplished via the following command; see Figure 15 for an
example.

ttt(A,B,[1:N]) calculates 〈A,B〉; the result is a scalar.

Using this definition of inner product, then the Frobenius norm of a tensor is given
by

‖A‖2
F = 〈A,A〉 =

I1∑
i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

A(i1, i2, . . . , iN)2.

In MATLAB the norm can be calculated as follows.

norm(A) calculates ‖A‖F , the Frobenius norm of a tensor.
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A = tensor(rand(3,4,2))

A is a tensor of size 3 x 4 x 2
A.data =
(:,:,1) =

0.9218 0.4057 0.4103 0.3529
0.7382 0.9355 0.8936 0.8132
0.1763 0.9169 0.0579 0.0099

(:,:,2) =
0.1389 0.6038 0.0153 0.9318
0.2028 0.2722 0.7468 0.4660
0.1987 0.1988 0.4451 0.4186

B = tensor(rand(4,3,2))

B is a tensor of size 4 x 3 x 2
B.data =
(:,:,1) =

0.8462 0.8381 0.8318
0.5252 0.0196 0.5028
0.2026 0.6813 0.7095
0.6721 0.3795 0.4289

(:,:,2) =
0.3046 0.3028 0.3784
0.1897 0.5417 0.8600
0.1934 0.1509 0.8537
0.6822 0.6979 0.5936

ttt(A,B,[1 3],[2 3])

ans is a tensor of size 4 x 4
ans.data =

1.7243 0.8943 1.0419 1.3295
2.2316 1.1254 1.6976 1.7408
1.5435 1.0523 1.2286 1.4355
1.5717 0.9954 1.2404 1.7594

Figure 14. Computing the contracted product with “tensor times a tensor.”
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A = tensor(rand(3,4,2))

A is a tensor of size 3 x 4 x 2
A.data =
(:,:,1) =

0.4966 0.6449 0.3420 0.5341
0.8998 0.8180 0.2897 0.7271
0.8216 0.6602 0.3412 0.3093

(:,:,2) =
0.8385 0.7027 0.6946 0.9568
0.5681 0.5466 0.6213 0.5226
0.3704 0.4449 0.7948 0.8801

B = tensor(rand(3,4,2))

B is a tensor of size 3 x 4 x 2
B.data =
(:,:,1) =

0.1730 0.2523 0.1365 0.1991
0.9797 0.8757 0.0118 0.2987
0.2714 0.7373 0.8939 0.6614

(:,:,2) =
0.2844 0.9883 0.5155 0.2259
0.4692 0.5828 0.3340 0.5798
0.0648 0.4235 0.4329 0.7604

ttt(A,B,[1:3])

ans is a tensor of order 0 (i.e., a scalar)
ans.data =

7.2681

Figure 15. Computing the inner product with “tensor times a tensor.”
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4 Matricize: Transforming a Tensor into a Matrix

It is often useful to rearrange the elements of a tensor so that they form a matrix.
Although many names for this process exist, we call it “matricizing,” following Kiers
[9], because matricizing a tensor is analogous to vectorizing a matrix. De Lathauwer
et al. [5] call this process “unfolding.” It is sometimes also called “flattening” (see,
e.g., [15]).

4.1 General Matricize

Let A be an I1 × I2 × · · · × IN tensor, and suppose we wish to rearrange it to be
matrix of size J1× J2. Clearly, the number of entries in the matrix must be the same
as the number of entries in the tensor; in other words,

∏N
n=1 In = J1J2. Given J1 and

J2 satisfying the above property, the mapping can be done any number of ways so
long as we have a one-to-one mapping π such that

π : {1, . . . , I1} × {1, . . . , I2} × · · · × {1, · · · , IN} → {1, . . . , J1} × {1, . . . , J2}.

The tensor as matrix class supports the conversion of a tensor to a matrix as
follows. Let the set of indices be partitioned into two disjoint subsets: {1, . . . , N} =
{r1, . . . , rK} ∪ {c1, . . . , cL}. The set {r1, . . . , rK} defines those indices that will be
mapped to the row indices of the resulting matrix and the set {c1, . . . , cL} defines
those indices that will likewise be mapped to the column indices. In this case,

J1 =
K∏

k=1

Irk
and J2 =

L∏
`=1

Ic`
.

Then we define π(i1, i2, . . . , iN) = (j1, j2) where

j1 = 1 +
K∑

k=1

(irk
− 1)

k−1∏
k̂=1

Irk̂

 and j2 = 1 +
L∑

`=1

(ir`
− 1)

`−1∏
ˆ̀=1

Irˆ̀

 .

Note that the sets {r1, . . . , rK} and {c1, . . . , cL} can be in any order and are not
necessarily ascending. The following MATLAB commands convert a tensor to a
matrix, and Figure 16 shows some examples.

A = tensor as matrix(T,RDIMS) matricizes T such that the dimensions (or
modes) specified in RDIMS map to the rows of the matrix (in the order given),
and the remaining dimensions (in ascending order) map to the columns.

A = tensor as matrix(T,RDIMS,CDIMS) matricizes T such that the
dimensions specified in RDIMS map to the rows of the matrix, and the
dimensions specified in CDIMS map to the columns, both in the order given.
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A tensor as matrix object can be converted to a matrix as follows.

B = double(A) converts the tensor as matrix object to a matrix.

Also, the size of the corresponding tensor, the tensor indices corresponding to the
matrix rows, and tensor indices corresponding to the matrix columns can be extracted
as follows.

sz = A.tsize gives the size of the corresponding tensor.

ridx = A.rindices gives the indices that have been mapped to the rows, i.e.,
{r1, . . . , rK}.

cidx = A.cindices gives the indices that have been mapped to the columns,
i.e., {c1, . . . , cL}.

With overloaded functions in MATLAB, the tensor as matrix class allows mul-
tiplication between tensors and/or matrices. More precisely, mtimes(A,B) is called
for the syntax A * B when A or B is a tensor as matrix object. The result is an-
other tensor as matrix object that can be converted back into a tensor object, as
described below. The multiplication is analogous to the functionality provided by
ttt for multiplying two tensor objects. Figure 17 shows an example of tensor-tensor
multiplication using tensor as matrix objects.

Given a tensor as matrix object, we can automatically rearrange its entries back
into a tensor by passing the tensor as matrix object into the constructor for the
tensor class. The tensor as matrix class contains the mode of matricization and
original tensor dimensions, making the conversion transparent to the user. The fol-
lowing MATLAB command can convert a matrix to a tensor, and Figure 18 shows
such a conversion.

tensor(A) creates a tensor from A, which is a tensor as matrix object.

28



T = tensor(reshape(1:24,[4 3 2]))

T is a tensor of size 4 x 3 x 2
T.data =
(:,:,1) =

1 5 9
2 6 10
3 7 11
4 8 12

(:,:,2) =
13 17 21
14 18 22
15 19 23
16 20 24

% Matricizing the tensor
tensor_as_matrix(T,[1])

ans is a matrix corresponding to a tensor of size 4 x 3 x 2.
Row index spans tensor mode(s) [1].
Column index spans tensor mode(s) [2, 3].
ans.data =

1 5 9 13 17 21
2 6 10 14 18 22
3 7 11 15 19 23
4 8 12 16 20 24

% Another way of matricizing the tensor
tensor_as_matrix(T,[2])

ans is a matrix corresponding to a tensor of size 4 x 3 x 2.
Row index spans tensor mode(s) [2].
Column index spans tensor mode(s) [1, 3].
ans.data =

1 2 3 4 13 14 15 16
5 6 7 8 17 18 19 20
9 10 11 12 21 22 23 24

% And yet another way of matricizing the tensor
tensor_as_matrix(T,[2],[3 1])

ans is a matrix corresponding to a tensor of size 4 x 3 x 2.
Row index spans tensor mode(s) [2].
Column index spans tensor mode(s) [3, 1].
ans.data =

1 13 2 14 3 15 4 16
5 17 6 18 7 19 8 20
9 21 10 22 11 23 12 24

Figure 16. Matricizing a tensor using the tensor as matrix class.
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% Create a random tensor and matricize it
T = rand(3,4,2);
A = tensor_as_matrix(T,2)

A is a matrix corresponding to a tensor of size 3 x 4 x 2.
Row index spans tensor mode(s) [2].
Column index spans tensor mode(s) [1, 3].
A.data =

0.5390 0.1358 0.5949 0.1808 0.5269 0.9991
0.5256 0.3757 0.4611 0.4731 0.5443 0.1961
0.3962 0.0959 0.8326 0.8298 0.5672 0.1057
0.7578 0.1490 0.1960 0.1779 0.6324 0.5835

% Compute the product of two matricized tensors
A’ * A

ans is a matrix corresponding to a tensor of size 3 x 2 x 3 x 2.
Row index spans tensor mode(s) [1, 2].
Column index spans tensor mode(s) [3, 4].
ans.data =

1.2980 0.4216 1.0414 0.8097 1.2740 1.1256
0.4216 0.1910 0.3631 0.3084 0.4247 0.3064
1.0414 0.3631 1.2982 1.0515 1.1606 0.8872
0.8097 0.3084 1.0515 0.9767 0.9359 0.4649
1.2740 0.4247 1.1606 0.9359 1.2955 1.0621
1.1256 0.3064 0.8872 0.4649 1.0621 1.3883

Figure 17. Tensor-tensor multiplication using tensor as matrix objects.
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% Convert the tensor_as_matrix object from the previous example
% into a tensor

T = tensor(A)
T is a tensor of size 3 x 4 x 2
T.data =
(:,:,1) =

0.5390 0.5256 0.3962 0.7578
0.1358 0.3757 0.0959 0.1490
0.5949 0.4611 0.8326 0.1960

(:,:,2) =
0.1808 0.4731 0.8298 0.1779
0.5269 0.5443 0.5672 0.6324
0.9991 0.1961 0.1057 0.5835

Figure 18. Constructing a tensor by reshaping a tensor as matrix object.

4.2 Mode-n Matricize

Typically, a tensor is matricized so that all of the fibers associated with a particular
single dimension are aligned as the columns of the resulting matrix. In other words,
we align the fibers of dimension n of a tensor A to be the columns of the matrix. This
is a special case of the general matricize where only one dimension is mapped to the
rows, so K = 1 and {r1} = {n}. The resulting matrix is typically denoted by A(n).

The columns can be ordered in any way. Two standard, but different, orderings
are used by De Lathauwer et al. [5] and Kiers [9]. Both are cyclic, but the order
is reversed. For De Lathauwer et al. [5], the ordering is given by {c1, . . . , cL} =
{n − 1, n − 2, . . . , 1, N,N − 1, . . . , n + 1}, and we refer to this ordering as backward
cyclic or “bc” for short. For Kiers [9], the ordering is given by {c1, . . . , cL} = {n +
1, n+2, . . . , N, 1, 2, . . . , n− 1}, and we refer to this ordering as forward cyclic or “fc”
for short. Figure 19 shows the backward cyclic ordering and Figure 20 shows the
forward cyclic ordering.

The following MATLAB commands can convert a tensor to a matrix according to
the two definitions above, and Figure 21 shows two examples of matricizing a tensor.
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Figure 19. Backward cyclic matricizing a 3-way tensor.

I
1

I2

I 3

A

I
1

I2

I3

A(1)

�
�

�
�

�� �
�

�� �
�

I
1

I2

I 3

A

I
2

I3

I1

A(2)

�
�

�
�

�
�

��

�
�

��

I
1

I2

I 3

A

I
3

I1

I2

A(3)

Figure 20. Forward cyclic matricizing a 3-way tensor.

32



tensor as matrix(T,n,’bc’) computes T(n), i.e., matricizing T using a
backward cyclic ordering. The equivalent general command is
tensor as matrix(T,n, [n-1:-1:1 ndims(T):-1:n+1]).

tensor as matrix(T,n,’fc’) computes T(n), i.e., matricizing T using a
forward cyclic ordering. The equivalent general command is
tensor as matrix(T,n, [n+1:ndims(T) 1:n-1]).

One benefit of matricizing is that tensors stored in matricized form may be manip-
ulated as matrices, reducing n-mode multiplication, for example, to a matrix-matrix
operation. If B = A×n M, then

B(n) = MA(n).

Moreover, the series of n-mode products in (2), when written as a matrix formulation,
can be expressed as a series of Kronecker products involving the U matrices. Consider
the ordering of the tensor dimensions that map to the column space of the matrix
(e.g., for forward cyclic ordering about mode-3 on a 4th-order tensor; then {r1} = {3}
and {c1, c2, c3} = {4, 1, 2}). The series of n-mode products in (2) is given by

B(n) = U(n)A(n)

(
U(cn−1) ⊗U(cn−2) ⊗ · · · ⊗U(c1)

)T
.

Figure 22 shows an example of computing the series of n-mode products using
tensor as matrix and Kronecker products. The tensor as matrix object is con-
verted into a standard MATLAB matrix for matrix-matrix multiplication, and the
result must be converted back to a tensor with further matrix manipulations. Because
this approach requires that the user code some lower level details, this example high-
lights the simplicity of the tensor class, which accomplishes the same computation
in one function call to ttm.

5 Decomposed Tensors

As mentioned previously, we have also created two additional classes to support the
representation of tensors in decomposed form, that is, as the sum of rank-1 tensors.
A rank-1 tensor is a tensor that can be written as the outer product of vectors, i.e.,

A = λ u(1) ◦ u(2) ◦ · · · ◦ u(N),

where λ is a scalar and each u(n) is an In-vector, for n = 1, . . . , N . The ◦ symbol
denotes the outer product; so, in this case, the (i1, i2, . . . , iN) entry of A is given by

A(i1, i2, . . . , iN) = λ u
(1)
i1

u
(2)
i2
· · ·u(N)

iN
,

where ui denotes the ith entry of vector u. We focus on two different tensor decom-
positions: CP and Tucker.
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% Let T be a 3 x 4 x 2 tensor
T = tensor(rand(3,4,2))

T is a tensor of size 3 x 4 x 2
T.data =
(:,:,1) =

0.5390 0.5256 0.3962 0.7578
0.1358 0.3757 0.0959 0.1490
0.5949 0.4611 0.8326 0.1960

(:,:,2) =
0.1808 0.4731 0.8298 0.1779
0.5269 0.5443 0.5672 0.6324
0.9991 0.1961 0.1057 0.5835

% Backward cyclic
A1 = tensor_as_matrix(T,2,’bc’)

A1 is a matrix corresponding to a tensor of size 3 x 4 x 2.
Row index spans tensor mode(s) [2].
Column index spans tensor mode(s) [1, 3].
A1.data =

0.5390 0.1358 0.5949 0.1808 0.5269 0.9991
0.5256 0.3757 0.4611 0.4731 0.5443 0.1961
0.3962 0.0959 0.8326 0.8298 0.5672 0.1057
0.7578 0.1490 0.1960 0.1779 0.6324 0.5835

% Forward cyclic
A2 = tensor_as_matrix(T,2,’fc’)

A2 is a matrix corresponding to a tensor of size 3 x 4 x 2.
Row index spans tensor mode(s) [2].
Column index spans tensor mode(s) [3, 1].
A2.data =

0.5390 0.1808 0.1358 0.5269 0.5949 0.9991
0.5256 0.4731 0.3757 0.5443 0.4611 0.1961
0.3962 0.8298 0.0959 0.5672 0.8326 0.1057
0.7578 0.1779 0.1490 0.6324 0.1960 0.5835

Figure 21. Two choices for converting a tensor to a matrix.
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% Compute a random T and a sequence of matrices
sizeT = [5,4,3,2];
T = tensor(rand(sizeT));
for n = 1:ndims(T)

U{n} = rand(size(T,n),size(T,n));
end

% Use a tensor command to compute the
% tensor times the sequence of matrices
A = ttm(T,U);

% Manipulate the tensor instead in matrix form
% to compute the same result.
rdim = 2;
M = tensor_as_matrix(T, rdim, ’fc’);
cdims = M.cindices;
B = U{rdim} * double(M);
B = B * kron(kron(U{cdims(3)},U{cdims(2)}),U{cdims(1)})’;

% Reshape result to match A
B = reshape(B, [sizeT(rdim) sizeT(cdims)] );
[sdims sindx] = sort([rdim cdims]);
B = permute(B,sindx);

% Compare the results
val = norm(A - tensor(B)) / norm(A)

val =
1.5292e-16

Figure 22. Example of computing the series of n-mode products using
tensor as matrix.
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5.1 CP tensors

Recall that “CP” is shorthand for CANDECOMP [2] and PARAFAC [7], which are
identical decompositions that were developed independently for different applications.
The CP decomposition is a weighted sum of rank-1 tensors, given by

A =
K∑

k=1

λk U
(1)
:k ◦U

(2)
:k ◦ · · · ◦U

(N)
:k . (4)

Here λ is a vector of size K and each U(n) is a matrix of size In×K, for n = 1, . . . , N .
Recall that the notation U

(n)
:k denotes the kth column of the matrix U(n).

The following MATLAB command creates a CP tensor.

T = cp tensor(lambda,U) creates a cp tensor object. Here lambda is a
K-vector and U is a cell array whose nth entry is the matrix U (n) with K
columns.

A CP tensor can be converted to a dense tensor as follows; see Figure 23 for an
example.

B = full(A) converts a cp tensor object to a tensor object.

Addition and subtraction of CP tensors is handled in a special manner. The λ’s
and U(n)’s are concatenated. To add or subtract two CP tensors (of the same order
and size), use the + and - signs. An example is shown in Figure 24.

A + B computes the sum of two CP tensors.

A - B computes the difference of two CP tensors.

To determine the value of K for a CP tensor, execute the following MATLAB
command.

r = length(T.lambda) returns the “rank” of the tensor T.

36



A = cp_tensor(5, [2 3 4]’, [1 2]’, [5 4 3]’)

A is a CP tensor of size 3 x 2 x 3
A.lambda =

5
A.U{1} =

2
3
4

A.U{2} =
1
2

A.U{3} =
5
4
3

% The size of A
size(A)

ans =
3 2 3

% The ‘‘rank’’ of A
length(A.lambda)

ans =
1

% Convert to a (dense) tensor
B = full(A)

B is a tensor of size 3 x 2 x 3
B.data =
(:,:,1) =

50 100
75 150

100 200
(:,:,2) =

40 80
60 120
80 160

(:,:,3) =
30 60
45 90
60 120

Figure 23. Creating a CP tensor.
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A = cp_tensor(5, [2 3 4]’, [1 2]’, [5 4 3]’);
B = A + A

B is a CP tensor of size 3 x 2 x 3
B.lambda =

5
5

B.U{1} =
2 2
3 3
4 4

B.U{2} =
1 1
2 2

B.U{3} =
5 5
4 4
3 3

C = full(B)

C is a tensor of size 3 x 2 x 3
C.data =
(:,:,1) =

100 200
150 300
200 400

(:,:,2) =
80 160

120 240
160 320

(:,:,3) =
60 120
90 180

120 240

Figure 24. Adding two CP tensors.
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5.2 Tucker tensors

The Tucker decomposition [14], also called a Rank-(K1, K2, . . . , KN) decomposition
[6], is another way of summing decomposed tensors and is given by

A =

K1∑
k1=1

K2∑
k2=1

· · ·
KN∑

kN=1

λ(k1, k2, . . . , kN) U
(1)
:k1
◦U

(2)
:k2
◦ · · · ◦U

(N)
:kN

. (5)

Here λ is itself a tensor of size K1×K2× · · ·×KN , and each U(n) is a matrix of size
In × Kn, for n = 1, . . . , N . As before, the notation U

(n)
:k denotes the kth column of

the matrix U(n). The tensor λ is often called the “core array” or “core tensor.”

A Tucker tensor can be created in MATLAB as follows; Figure 25 shows an
example.

T = tucker tensor(lambda,U) where lambda is a K1 ×K2 × · · · ×KN tensor
and U is a cell array whose nth entry is a matrix with Kn columns.

A Tucker tensor can be converted to a dense tensor as follows.

B = full(A) converts a tucker tensor object to a tensor object.

5.3 Relationship between CP and Tucker tensors

Mathematically, a CP decomposition is a special case of a Tucker decomposition
where K = K1 = K2 = · · · = KN and λ(k1, k2, . . . , kN) is zero unless k1 = k2 =
· · · = kN (i.e., only the diagonal entries of the tensor λ are non-zero). On the other
hand, it is possible to express a Tucker decomposition as a CP decomposition where
K =

∏N
n=1 Kn.

6 Examples

We demonstrate the use of the tensor, cp tensor, and tucker tensor classes for
algorithm development by implementing the higher-order generalizations of the power
method and orthogonal iteration presented by De Lathauwer et al. [6].
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lambda = tensor(rand(4,3,1),[4 3 1]);
for n = 1 : 3

U{n} = rand(5,size(lambda,n));
end
A = tucker_tensor(lambda,U)

A is a Tucker tensor of size 5 x 5 x 5
A.lambda =
Tensor of size 4 x 3 x 1
data =

0.8939 0.2844 0.5828
0.1991 0.4692 0.4235
0.2987 0.0648 0.5155
0.6614 0.9883 0.3340

A.U{1} =
0.4329 0.6405 0.4611 0.0503
0.2259 0.2091 0.5678 0.4154
0.5798 0.3798 0.7942 0.3050
0.7604 0.7833 0.0592 0.8744
0.5298 0.6808 0.6029 0.0150

A.U{2} =
0.7680 0.4983 0.7266
0.9708 0.2140 0.4120
0.9901 0.6435 0.7446
0.7889 0.3200 0.2679
0.4387 0.9601 0.4399

A.U{3} =
0.9334
0.6833
0.2126
0.8392
0.6288

% The size of A
size(A)
ans =

5 5 5

% The "rank" of A
size(A.lambda)
ans =

4 3 1

Figure 25. Creating a Tucker tensor.
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The first example is the higher-order power method, Algorithm 3.2 of De Lath-
auwer et al. [6], which is a multilinear generalization of the best rank-1 approximation
problem for matrices. The best rank-1 approximation problem is that, given a tensor
A, we want to find a B of the form

B = λ u(1) ◦ u(2) ◦ · · · ◦ u(N),

such that ‖A−B ‖ is as small as possible. The higher-order power method computes
a B that approximately solves this problem. Essentially, this method works as follows.
It fixes all u-vectors except u(1) and then solves for the optimal u(1), likewise for u(2),
u(3), and so on, cycling through the indices until the specified number of iterations is
exhausted. In Figure 26, we show the algorithm using our new notation, Figure 27
shows the MATLAB code that implements the algorithm, and Figure 28 shows sample
output.

The second example is the higher-order orthogonal iteration, which is the mul-
tilinear generalization of the best rank-R approximation problem for matrices. Al-
gorithm 4.2 in [6] is the higher-order orthogonal iteration and finds the best rank-
(R1, R2, . . . , RN) approximation of a higher-order tensor. We have reproduced this
algorithm in Figure 29 using our new notation. Our corresponding MATLAB imple-
mentation is listed in Figure 30, and Figures 31–33 show the computation of different
rank-(R1, R2, R3) approximations to the same random tensor from Figure 28.

7 Conclusions

We have described four new MATLAB classes for manipulating dense and factored
tensors. These classes extend MATLAB’s built-in capabilities for multidimensional
arrays in order to facilitate rapid algorithm development when dealing with tensor
datatypes.

The tensor class simplifies the algorithmic details for implementing numerical
methods for higher-order tensors by hiding the underlying matrix operations. It
was previously the case that users had to know how to appropriately reshape the
tensor into a matrix, execute the desired operation using matrix commands, and
then appropriately reshape the result into a tensor. This can be nonintuitive and
cumbersome, and we believe using the tensor class will be much simpler.

The tensor as matrix class offers a way to convert a higher-order tensor into
a matrix. Many existing algorithms in the literature that deal with tensors rely
on matrix-matrix operations. The tensor as matrix functionality offers a means
to implement these algorithms more easily, without the difficulty of reshaping and
permuting tensor objects to the desired shape.

The tucker tensor and cp tensor classes give users an easy way to store and
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Higher-Order Power Method

In: A of size I1 × I2 × · · · × IN .

Out: B of size I1 × I2 × · · · × IN , an estimate of the best rank-1
approximation of A.

1. Compute initial values: Let u(n)
0 be the dominant left singular

vector of A(n) for n = 2, . . . , N .

2. For k = 0, 1, 2, . . . (until converged), do:

For n = 1, . . . , N , do:

ũ(n)
k+1 = A×̄−n {uk}.

λ
(n)
k+1 =

∥∥∥ũ(n)
k+1

∥∥∥
u(n)

k+1 = ũ(n)
k+1/λ

(n)
k+1

3. Let λ = λK and {u} = {uK}, where K is the index of the final
result of step 2.

4. Set B = λ u(1) ◦ u(2) ◦ · · · ◦ u(n).

Figure 26. Higher-order power method algorithm of De Lathauwer, De Moor, and
Vandewalle using the proposed notation. In this illustration, subscripts denote iteration
number.
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function B = hopm(A,kmax)

A = tensor(A);
N = ndims(A);

% Default value
if ~exist(’kmax’,’var’)

kmax = 5;
end

% Compute the dominant left singluar vectors
% of A_(n) (2 <= n <= N)
for n = 2:N
[u{n}, lambda(n), V] = ...

svds(double(tensor_as_matrix(A,n)), 1);
end

% Iterate until convergence
for k = 1:kmax
for n = 1:N
u{n} = ttv(A, u, -n);
lambda(n) = norm(U{n});
u{n} = double(u{n}./lambda(n));

end
end

% Assemble the resulting tensor
B = cp_tensor(lambda(N), u);

Figure 27. MATLAB code for our implementation of the higher-order power method.
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T = tensor(rand(3,4,2))

T is a tensor of size 3 x 4 x 2
T.data =
(:,:,1) =

0.8030 0.9159 0.8735 0.4222
0.0839 0.6020 0.5134 0.9614
0.9455 0.2536 0.7327 0.0721

(:,:,2) =
0.5534 0.3358 0.3567 0.5625
0.2920 0.6802 0.4983 0.6166
0.8580 0.0534 0.4344 0.1133

T1 = hopm(T)

T1 is a CP tensor of size 3 x 4 x 2
T1.lambda =

2.6206
T1.U{1} =

-0.6717
-0.5446
-0.5023

T1.U{2} =
0.5431
0.4700
0.5444
0.4333

T1.U{3} =
-0.8075
-0.5899

T1f = full(T1)

T1f is a tensor of size 3 x 4 x 2
T1f.data =
(:,:,1) =

0.7719 0.6680 0.7738 0.6159
0.6258 0.5416 0.6274 0.4993
0.5772 0.4996 0.5787 0.4606

(:,:,2) =
0.5639 0.4880 0.5653 0.4499
0.4572 0.3956 0.4583 0.3647
0.4217 0.3649 0.4227 0.3364

(norm(T) - norm(T1f)) / norm(T)

ans =
9.9110e-2

Figure 28. Example of the higher-order power method.
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Higher-Order Orthogonal Iteration

In: A of size I1 × I2 × · · · × IN and desired rank of output.

Out: B of size I1 × I2 × · · · × IN , an estimate of the best
rank-(R1, R2, . . . , RN ) approximation of A.

1. Compute initial values: Let U(n)
0 ∈ RIn×Rn be an orthonormal

basis for the dominant Rn-dimensional left singular subspace of
A(n) for n = 2, . . . , n.

2. For k = 0, 1, 2, . . . (until converged), do:

For n = 1, . . . , N , do:

Ũ = A×−n {UT
k }

Let W of size In ×Rn solve:

max
∥∥∥ Ũ ×n WT

∥∥∥ subject to WT W = I.

U(n)
k+1 = W.

3. Let {U} = {UK}, where K is the index of the final result of step 2.

4. Set λ = A× {UT }.

5. Set B = λ× {U}.

Figure 29. Higher-order orthogonal iteration algorithm of De Lathauwer, De Moor, and
Vandewalle using the proposed notation. In this illustration, subscripts denote iteration
number.

45



function B = hooi(A,R,kmax)

A = tensor(A);
N = ndims(A);

% Default value
if ~exist(’kmax’,’var’)

kmax = 5;
end

% Compute an orthonormal basis for the dominant
% Rn-dimensional left singular subspace of
% A_(n) (1 <= n <= N). We store its transpose.
for n = 1:N
[U, S, V] = ...
svds(double(tensor_as_matrix(A,n)), R(n));

Ut{n} = U’;
end

% Iterate until convergence
for k = 1:kmax
for n = 1:N
Utilde = ttm(A, Ut, -n);

% Maximize norm(Utilde x_n W’) wrt W and
% keeping orthonormality of W
[W,S,V] = ...
svds(double(tensor_as_matrix(Utilde, n)), R(n));

Ut{n} = W’;
end

end

% Create the core array
lambda = ttm(A, Ut);

% Create cell array containing U from the cell
% array containing its transpose
for n = 1:N
U{n} = Ut{n}’;

end

% Assemble the resulting tensor
B = tucker_tensor(lambda, U);

Figure 30. MATLAB code for our implementation of the higher-order orthogonal
iteration method.
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T2 = hooi(T,[1 1 1])

T2 is a Tucker tensor of size 3 x 4 x 2
T2.lambda =
Tensor of size 1 x 1 x 1
data =

2.6206
T2.U{1} =

0.6717
0.5446
0.5023

T2.U{2} =
-0.5431
-0.4700
-0.5444
-0.4333

T2.U{3} =
-0.8075
-0.5899

T2f = full(T2)

T2f is a tensor of size 3 x 4 x 2
T2f.data =
(:,:,1) =

0.7719 0.6680 0.7738 0.6159
0.6258 0.5416 0.6274 0.4993
0.5772 0.4996 0.5787 0.4606

(:,:,2) =
0.5639 0.4880 0.5653 0.4499
0.4572 0.3956 0.4583 0.3647
0.4217 0.3649 0.4227 0.3364

norm(T2f)

ans =
2.6206

Figure 31. Example of the higher-order orthogonal iteration for computing the best
rank-(1,1,1) tensor.
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T3 = hooi(T,[2 2 1])

T3 is a Tucker tensor of size 3 x 4 x 2
T3.lambda =
Tensor of size 2 x 2 x 1
data =

-2.6206 0.0000
-0.0000 -1.1233

T3.U{1} =
0.6718 -0.0186
0.5445 0.6903
0.5023 -0.7233

T3.U{2} =
0.5430 -0.6862
0.4701 0.3773
0.5445 -0.1259
0.4332 0.6090

T3.U{3} =
-0.8083
-0.5888

T3f = full(T3)

T3f is a tensor of size 3 x 4 x 2
T3f.data =
(:,:,1) =

0.7843 0.6625 0.7769 0.6061
0.1962 0.7786 0.5491 0.8813
1.0284 0.2523 0.6620 0.0610

(:,:,2) =
0.5713 0.4826 0.5659 0.4415
0.1429 0.5671 0.3999 0.6419
0.7491 0.1838 0.4822 0.0444

norm(T3f)

ans =
2.8512

Figure 32. Example of the higher-order orthogonal iteration for computing the best
rank-(2,2,1) tensor.
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T4 = hooi(T,[3 4 2])

T4 is a Tucker tensor of size 3 x 4 x 2
T4.lambda =
Tensor of size 3 x 4 x 2
data =
(:,:,1) =

2.6201 -0.0075 -0.0338 -0.0029
-0.0176 1.1198 -0.0118 -0.0006
0.0142 0.0854 -0.1634 -0.1214

(:,:,2) =
-0.0126 -0.0529 0.2446 -0.1165
0.1747 0.0187 0.2369 0.0055

-0.2249 -0.1523 -0.2324 -0.0311
T4.U{1} =

0.6774 0.0720 -0.7321
0.5344 -0.7321 0.4224
0.5055 0.6774 0.5343

T4.U{2} =
0.5442 0.6798 -0.2895 0.3974
0.4774 -0.3606 0.6648 0.4474
0.5474 0.1200 0.2110 -0.8009
0.4200 -0.6272 -0.6556 0.0203

T4.U{3} =
0.8117 0.5841
0.5841 -0.8117

T4f = full(T4)

T4f is a tensor of size 3 x 4 x 2
T4f.data =
(:,:,1) =

0.8030 0.9159 0.8735 0.4222
0.0839 0.6020 0.5134 0.9614
0.9455 0.2536 0.7327 0.0721

(:,:,2) =
0.5534 0.3358 0.3567 0.5625
0.2920 0.6802 0.4983 0.6166
0.8580 0.0534 0.4344 0.1133

norm(T4f)

ans =
2.9089

Figure 33. Example of the higher-order orthogonal iteration for computing the best
rank-(3,4,2) tensor.
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manipulate factored tensors, as well as the ability to convert such tensors into non-
factored (or dense) format.

At this stage, our MATLAB implementations are not optimized for performance
or memory usage; however, we have striven for consistency and ease-of-use. In the
future, we plan to further enhance these classes and add additional functionality.

Over the course of this code development effort, we have relied on published
notation, especially from Kiers [9] and De Lathauwer et al. [6]. To address ambiguities
that we discovered in the class development process, we have proposed extensions to
the existing mathematical notation, particularly in the area of tensor multiplication,
that we believe more clearly denote mathematical concepts that were difficult to write
succinctly with the existing notation.

We have demonstrated our new notation and MATLAB classes by revisiting the
higher-order power method and the higher-order orthogonal iteration method from
[6]. In our opinion, the resulting algorithm and code is more easily understood using
our consolidated notation and MATLAB classes.
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